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Abstract—A new hybnd element method suitable for problems with different Poisson’s ratios.
including incompressible and nearly incompressible materials, is proposed. This hybrid model does
notexhibitany locking phenomenon for nearly incompressible materials, and is capable of producing
correct displacement and stress solutions in the case of uniform stress and zero displacement state
for incompressible materials. In addition, the model has other favourable characteristics such as
having no extra zero encrgy modes. being coordinate invariant, possessing high accuracy and
requiring simple manipulations in the formulation. A new variational functional suitable for different
Poisson's ratios is proposed here. This functional is given in terms of a number of independent
variables which include two stresses, one strain, two displacements and two average compressive
stresses. A planc strain quadrilateral element Q, _ can be established based on the proposed hybrid
element method. Through a series of worked examples it is demonstrated that the element can be
used for various Poisson’s ratios, possesses high accuracy and will not exhibit locking. By comparing
the proposed clement with existing elements for incompressible and nearly incompressible materials,
it is possible to determine their relationship and to establish the fact that the hybrid method is a
unificd method incorporating many displacement models.

INTRODUCTION

When standard conforming displacement elements are used for problems involving nearly
incompressible materials, the locking phenomenon will become increasingly apparent as
the Poisson’s ratio approaches the value of 0.5, and the problem will become singular for
the case of incompressible material. In general, two methods of solution are available. The
first one is directed towards single ficld displacement models, and requires the imposition
of certain constraints. The other method deals with multiple field models, in which constraint
conditions suitable for various Poisson’s ratios are introduced.

A tunctional suitable for incompressible and nearly incompressible material problems
was lirst proposed by Herrmann and Toms (1964), and Herrmann (1965), such a functional
included an average compressive stress variable and was applied to finite element analysis
successfully by Fried (1974), and Kuai and Liu (1983). The functional was subsequently
proven to be a special case of the more general Reissner principle by Key (1969).

Since both displucements and average compressive stresses are taken as nodal variables,
the finite elements developed are in fact mixed formulation models, which may yield stiffness
matrices that are not positive definite and are thus, difficult to solve. A more satisfactory
alternative method, at least for nearly incompressible materials, is to regard the average
compressive stresses as independent internal parameters which are subsequently eliminated
through static condensation. However, for the case of incompressible materials, it would
be necessary to employ special element elimination techniques (such as the special front
solution proposed by Kuai and Liu (1983)) in order to obtain solutions. While it is true
that the above-mentioned finite clement models will not exhibit the locking phenomenon
and also provide a unilicd method for problems involving different Poisson's ratios, they
nevertheless suffer from the disadvantage of not being able to provide accurate solutions,
particularly for the case of simple, lower-order elements.

The usc of reduced integration in single ficld conforming displacement elements for
the computation of nearly incompressible material problems was suggested by Hughes
(1977. 1980). This simple technique can also alleviate locking, although it cannot be applied
directly to incompressible material problems. A single field conforming displacement
element model with generalized displacements was introduced by Zhong and Lee (1982),
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and Ltand Liu (1986). By introducing incompressible constraint conditions into the element
formulation, it 1s possible to solve the singularity problem connected with incompressible
materials. [t should be noted that such a procedure is really equivalent to a special type of
condensation procedure.

In comparison with the single field conforming displacement element models mentioned
above. multiple field hybrid elements can in general offer higher accuracy. and in many
cases can be used to deal with nearly incompressible material problems without making
special efforts. Several hybrid elements were developed by Pian and Lee (1976) and by
Spilker and Pian (1978) and Spilker (1981) for axisymmetrical bodies with nearly incom-
pressible materials.

Recently, a new approach called the quasi-conforming element technique for the
penalty finite element method was presented by Tang and Liu (1985). In this technique the
dilatational strain and the deviatoric strain are both regarded as independent variables,
while the term in the [/(1 —2v) strain energy expression is treated as a penalty factor as v —
0.5. The adoption of the quasi-conforming element method at the element level will produce
extra zero energy in the terms with /(1 —2v), which in turn will guarantee non-trivial
solutions as v — 0.5, thus successfully overcoming the locking problem for nearly incom-
pressible material problems. The rectangular element @, by Tang and Liu (1985) based
on this technique has been found to be equivalent to the rectangular element developed by
Hughes based on reduced integration.

From the above discussions it can be seen that the full potential of the multiple ficld
hybrid method and the quasi-conforming element method has yet to be explored. It scems
entirely possible to be able to develop a hybrid model with high accuracy and high com-
putational efficiency, which at the same time can deal with materials with various Poisson’s
ratios (including incompressible and nearly incompressible materials).

VARIATIONAL PRINCIPLE AND HYBRID MODEL FOR INCOMPRESSIBLE AND
NEARLY INCOMPRESSIBLE MATERIALS

Variational principle

In order to reflect the variational constraint condition of zero (or approaching zero)
dilatational strain for incompressible or nearly incompressible materials, it would be appro-
priate to write the strain energy due to the dilatational strain separately from the other
terms of the energy expression. To this end, the minimum total potential energy principle
should be rewritten as

ny(u,) = J J‘J(‘Zs'{,«!,u, +5/’.0:-—?"u,)dv-—JJ‘T'u, ds (1
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and u, = [ t, w]" are the displacement vectors, T and T are the body forces in ¥ and the
boundary forces on Sy, respectively. The elasticity coefficient 4 and the elasticity matrix A,
are

. Ev

1 i

rob—

1
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where E, v, and G, are Young's modulus, Poisson’s ratio, and shear modulus, respectively
(G = E/2(1+v)).

It is obvious that as v — 0.5, 16* will approach infinity unless 8 also approaches zero,
thus resulting in the locking phenomenon.

The concept of average compressive stress (H = /(1 —2v)). which was introduced by
Herrmann (1965), can be incorporated into =, through the use of Lagrange multipliers, i.e.

ny(u, H,2) = J-J‘J l:% A e +HGv( =20 =T, a (H- T—ﬁﬂﬂ dr— J'J‘T'ru. ds.
Q

S

)

The Lagrange multiplier 2 can be obtained from dnf = 0, from which
a= =2Gv(1=2v)H. 3)
Substituting eqn (3) into eqn (2) yields

ne(u,, H) = jJ.J‘ UGetAe, =G =2v)vH* +2GvHO -T"u)) dv—J‘J‘Tdex. GY)

v Np

Equation (4) is in fact the functional established by Herrmann.

If the method proposed by Chen and Cheung (1987a,b) is adopted, then new variables
must be introduced into 7. Ignoring terms due to external forces for the time being, the
new functional of each element V, for deriving the clement stiffness matrix can be written
as

TAe, 6.6, 1, 1;) = jjf [le'Ae—o" (e—Diu) — (Dyo) u, +u(a, —Ae) (e —ag,)]dv  (5a)

in which the generalized strain is given by

e = [Cx' e_rv £ ?)-:v Tz V.rvvv flc].r

where H_ is the average compressive stress of the element. The generalized stress is given
by

g = [‘T.r- 0",,. 6:» Ty:~ t.\':v r.(‘vv ilo]-r

o, =[000,.0., Tt T Ho "
where H, is the multiplier for H,— H = 0. The generalized displacement is given by

u=[u, H]"
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where u, = [u,. v,, w,]" is the displacement expressed in terms of nodal parameters, H
the average compressive stress expressed in terms of element internal parameters. The
displacement expressed in terms of the internal parameters is given by

u, = [u,.0,.0w]"

where A and a are the elasticity matrices, with A = a "' and g is any prescribed constant.
The various matrices can be written in explicit form as follows:

1 v
| ¥
| v
A=2G : 0 (5b)
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As usual, the basic equations for the element can be obtained by taking the variational
equation dng = 0

ons = JAJ‘J‘{&T [(Ae—a) +2u(s, — Ae)] — 0" (e—DTu—Dju;) + 6 (22— 2a0,)
;'e

+ (5(!1,, + uA)T(Dod) +(5H' Ho} dl'+ JJ‘( ‘—O‘TT“; +TT5uq) dS = 0

A

The Euler equation is equivalent to

o= A¢
e = DIu+D}uy,
Dyos =0
Ho=0
6 =0, (6)

The equations (1 =2v)H =0, H,= H, and H} =0 are¢ included in eqns (6). It is
obvious that when v = 1/2, the incompressible condition of @ = Qs arrived at. Compatibility
of interclement traction T and interelement displacement U, + U, will be obtained by term

[[erm=o

o,

in ong; = 0.

Hybrid element models

All the variables o, o, &, u,, u, ctc. in n; are independent of each other. Since egns (5)
have similar forms to the functional by Chen and Cheung (1987a,b), they can be casily
used as a basis for the formulation of the finite element. Isopurametric interpolation
functions appear to be most suitable for the purpose of developing hybrid elements, since
the resulting element can be guaranteed to be coordinate invariant, and to have a simple
formulation and relatively high accuracy.

If the variables are given as

l

a=mNa

o =ph

o, =p B

u = Fq

u; = Mi N

then the stiffness matrix can be written as
K:=G"W-THW-'G (8)
and the stress vector as

o, = P,W;THW-'Gq 9)
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in which

G=[G|.-G:]
"1 "1 ~1
G, = PY(DIF)|/J|d{dndz
J-rd-t
i i ol
G, = (D,P)TM |/} dZ dn dr
Joandan o
"1 1 1
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Jaudor
q=[q% b, 4]".

It is obscrved that q includes the nodal parameter g, the element average compressive
stress parameter b, and the internal displacement parameter 4 and is therefore known as
the generalized nodal parameter. It should be noted that as a result of using isoparametric
interpolations, both W and W, are diagonal matrices.

Quadrilateral hybrid element for plane strain problems

A number of quadrilateral elements (Fig. 1) have already been established for the
calculation of plane strain problems with nearly incompressible materials by Hughes (1980),
Li and Liu (1986), and Tang and Liu (1985). The compatible displacement is well known
and is given by

u, = {';} = ¥ W) (T4 {i‘} (10)
= | “

while the isoparametric transformation is

{:} =3 (L+55) (1 +nn) {:}
R -1 i

{a, +a:§+u‘n+u4:n}

. . (L)
bi+b:{+bn+bln

L0 A2

(a) (b)
Fig. 1. A typical quadriateral element.
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in which u, r, and x,, y, are the nodal displacements and nodal coordinates, respectively,
and

a, = (x;+x:3+ x5+ x4)
a, = Y—x,+x1+x3—x,)
ay=H—x;—x,+x54+x,)
as = {(x;—x;4+x;—x4)
by = {0 +r2+ys+ys)
b= Y=y +r2+tyi—ri)
by={—y1=y:+y3+ys)
by =30 —y2t+yi—ya) (12)

For the plane strain problem in question, eqns (5) have to be reduced to the cor-
responding two-dimensional form, in which case

5.:l N, %
e=4 % =~l» N, a_: (13a)

o= < YA o= P, /;2 (13b)
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Three different elements can be established through the choice of different interpolating
functions which are listed in Table 1.
The various matrices required for making up the stiffness matrix K and the stress
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Table 1. Interpolating functions for different elements

Element

Function Qi-1L Q..¢ Qs
N, Llon Lin Lin
N: i iom |4 Lo
P, Lin o Lin. n Lin' n
| L(l.;.rn L ,]fr(l e

: (/1 [/ i/
P; .o .oy .oy
P, 1—}‘ W om 1‘% ‘/} (o
M . 0 0
M, i-n’ 0 0
Remarks Lincar interpolation for Lincar interpolation for Linear interpolation for

strains

Three average compressive
stress parameters

Four internal displacement
parameters

strains

One average compressive
stress parameter

No internal displacement
parameters

strains

Three average compressive
stress parameters

No internal displacement
parameters

matrix have been worked out explicitly and they are given as follows

v
. l v
A =20
5 0
v 0 —- (1l =2v)
(O a
II=AJ J A didy
i ]
in which
}Vll
- H, ‘ Hl:{Nn\l (1<)
H, NIN, (i=4)
H,
I, vl,,
i=1G I vl,,
', 0

vl,, vi, 0 —v(1 =201,
where I, is a 3 x 3 unit matrix, I, a »m xm unit matrix (m =3 for @, , and Q, |, and
m=1tor Q; o)

The diagonal matrices W' and W, ! for the three elements are given in Table 2.

Table 2. W~ and W, ' matrices
QJ—LL' QJ 1 Ql 4
di:lg(\V") HEL9.9,1,9.9,1.9.9.1.3,3) HL,9.9.1.9.9.1,9.9. 1)
diag (W ") M3 L33 L33 L33 W3 333133 D
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The matrices necessary for establishing W~ 'G. for element Q,_,, only, are given
explicitly as

A, 0 O
0 A 0
WG, = A, A, O
0 0 I
in which
([ Ba=bs  batby  —bitby  —bi—by]
Ar=z —bz—b4 b2+b4 “‘b2+b4 b:-b,;
L b4+b_\ b4‘“b3 "‘b4+b3 _b.g-b}_‘
I———a3+a, —a;—ay; a,—ay, a,+a, |
A,=Z ar+ay —a,—a, a,—as; —a.+d,
L—a,—ay —as+dad, a,—a; a,+a; |
and
B, 0
0 B,
-W G, = B, B,
B, B,
in which
0 0 0 0
16 16
I -'hbj 0 l —dy 0
_ 5 115
ll] = - ] BZ -
) 0 l6b ) 0 16(1
50 542

The following three points should be noted.

(1) For incompressible materials (v = 0.5), the internal parameter h® cannot be elim-
inated through static condensation at the individual element stage, and must be dealt with
only after assembly, through using techniques such as the front solution. When the front
solution is used, it is best to eliminate the internal parameter 4 first, the modal parameter
sccond, and lastly the average compressive stress parameter he.

(2) For nearly incompressible materials (v — 0.5) or ordinary materials (v < 0.5), it is
however possible to climinate the parameters h® and 4 directly at the individual element
stage through static condensation. Experience has shown that there is no deterioration in
the accuracy for problems with v = 0.49999999 when the computation is carried out on an
IBM-PC-AT computer in double precision.

(3) While stresses can be computed from ¢ = Ae or ¢ = P, the most accurate method
is the one based on o, = P,$,. This is particularly true for highly distorted elements by
Chen and Cheung (1987a.b) and Cheung and Chen (1988).

SAS 25T
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NUMERICAL EXAMPLES

Two examples will be presented to demonstrate the accuracy and versatility of the
proposed hybrid elements when applied to incompressible or nearly incompressible material
problems. All units are in kg and cm.

Incompressible material problem

The first example concerns a square block under uniform compression. The dimensions
and other details are given in Fig. 2.

Only one Q, ; or Q,_¢ element is used for the analysis. Since the Poisson’s ratio is
taken as 0.5, the computed displacement turns out to be, as expected, zero. The average
compressive stress is given as g, = 150, which corresponds to the exact solution. However,
in case element Q,_ is used for the analysis, then as a result of the locking phenomenon,
the value of the average compressive stress approaches infinity.

Compressible and nearly incompressible material problem

A cantilever beam under a shear load at the free end is analysed for a wide range of
Poisson’s ratios. The dimensions and other details are given in Fig. 3.

The computed vertical deflection at A and direct stress at B (Fig. 3) are listed in Tables
3 and 4, respectively. The computed deflection results are also presented diagramatically in
Fig. 4. From the results it can be seen that both @,  and Q, ¢ will not exhibit any locking
phenomenon, and that @, will yield more accurate results, particularly for stresses. For
nearly incompressible material problems Q, | is not a suitable element, since locking will
invariably occur as v — 0.5,

q 150

S\
H
8

Fig. 2. Square block under uniform compression.

Table 3. Verticul deflection at point A of cantilever beam for different Poisson’s ratios

Elements
Q; 1t Q4 C Q-x .
Results
v Ixt Ix5 2x 10 I xl Ix$§ 2x 10 Ixl 1x5 2x10 Exact
0.3 1062750 1390.350 1409.70 14730  1326.020 [392.74 141.6 897.0 12374 1406.925
0.49 899.567 1173.152 1196.496 168.866 1519.800 1268.920 888 1298 3269 1190.026
0.4999 8R8.859 1158.895 1182.841 169.989 1529.898 1258.787 457 459 48.6  1175.771
0.49999 BR8R.761 1158.765 1182.284 169999 1529.990 1258.693 45.1 45.1 454 1175640

0.499999 888.751 1158.751 1182.271 170.00 1529.999 1258.684 450 45.0 450 1175.626
0.4999999 888.750 1158.750 1182.270 (70.00 1530.000 1258.680 450 450 450 1175.625
0.49999999  888.749 1158.750 1182.270 170.00 1530.00 1258.689 450 450 450 1175625
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Fig. 3. Cantilever beam under shear load at free end.
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Fig. 4. A comparison of the computed v, results for the cantilever beam with different Poisson’s ratios.
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Tabie 4. Direct stress a, at point B of cantilever beum for different Powsson’s ratios

Elements
Ql -iL Q-J -t Q; i
Results
v Ix1 Ix5 2x 10 Ix1 [ x5 2x 10 I x1 x5 2x 10

0.3 —2250.0 —4050.0 —42933 —166.7 ~2700.0 —3398.3 -276.2 -3130.0 —4173.0
0.49 —22500 -—-4050.0 -—4311.3 —1667 =27000 —34453 —1{5099 39721 —7388.4
0.4999 —2250.0 —4050.0 -4312.5 —166.7 —2700.0 —3436.7 —2238.8 —4049.2 —BS350
0.49999 —2250.0 —4050.0 —4312.5 1667 ~2700.0 34366 22488 —40499 83485

0499999  —2250.0 —4049.8 43123 1667 —2700.2 —3436.7 -—-22499 —4050.1 —8549.8
0.4999999  —-2250.0 —4048.1 —4316.0 1667 —2701.7 34401 22497 —4050.0 —-8549.6
0.49999999 —-2249.7 —J4048.6 —4269.55 —166.7 —2684.5 —3383.1 22510 —3I047.0 -8550.6

Exact —22500 —4050.0 42750 -—-2250.0 —4050.0 —42750 22500 —4050.0 —4275.0

CONCLUSIONS

(1) In order to develop hybrid element models which can be applied to problems with
various Poisson’s ratios (including incompressible and nearly incompressible materials), it
is nceessary first of all to establish a new variational functional n,. Additional variables
have been introduced into the finite element formulation for the purpose of efticiency and
versatility. The introduction of £, and # facilitates the derivation of equations. The
parameter g, 15 used to improve the computational accuracy of stresses, while o will help
to increase the non-conforming internal displacement parameter u; effectively, thus avoiding
the matnix inverston operations in stiffness formulation required by other techniques.

(2) The clement Qg |, with three average compressive stress paramcters and four
internal displacement parameters, is an excellent clement for incompressible and nearly
incompressible material problems and s capable of yielding accurate displacement and
stress results.

(3) The clement (0, ¢ with one average compressive stress parameter can be applied
to incompressible and nearly incompressible material problems, and will not exhibit any
singulur or locking phenomenon. However, the accuracy of the results is inferior to that of
QO _11- It can be shown that for rectangular mesh divisions Q¢ will produce the same
results as the element developed by Hughes (1977).

(4) The element Q, | with three average compressible stress parameters i8S not a
suitable element for incompressible and nearly incompressible material problems. [t can be
shown that for rectangular mesh divisions, Q, | will produce the same results as the
conforming displacement Q.
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